SUS2019 GREEN RESIDENTIAL REMODELING + RENOVATION INSTRUCTOR: DONALD GROSE - SPRING 2015

TABLE ON CONTENTS

Introduction	0 1
CLIMATE ANALYSIS	02
CLIMATE DATA	03
ENERGY COMSUPTION DATA	07
INDOOR AIR QUALITY	08
SUSTAINABLE SYSTEMS	09
1. VENTILATION	10
2. SHADING	12
3. Zoning & Heating	1 4
DEEP ENERGY RETROFIT	16
Conclusion	18

INTRODUCTION

THE PROJECT I AM INVESTIGATING IS A REMODEL-IN-PROGRESS OF A FAMILY FRIEND. THIS IS THE SAME STRUCTURE I USED IN THE ENERGY CONSUMPTION Assignment on Week 1. The home was designed IN 1979 BY SAN FRANCISCO ARCHITECT, JIM JENNINGS. CONTEMPORARY IN STYLE, THE THREE STORY HOME HOSTS THREE BEDROOMS AND TWO FULL WITH ONE PARTIAL BATHROOMS. TOTAL SQUARE FOOTAGE, DISREGARDING SQUARE FOOTAGE FOR THE 2-CAR GARAGE, COMES UP TO 1,640 SQUARE FEET. THE EXTERIOR FAÇADE IS STUCCO, WITH VARYING LEVELS OF WOODEN PATIOS, ALONG THE SIDE AND BACK ENTRANCES. HEATING IS FORCED AIR WITH ONE ZONE, GAS, AND THERE IS NO COOLING SYSTEM. THERE IS ONE WOOD-BURNING FIREPLACE IN THE LIVING ROOM AS WELL AS 220 VOLT WASHER AND DRYER.

THE CLIENT PURCHASED THE HOME IN APRIL

21st, 2014 AND HAS DONE A SERIES OF EXTENDED

RENOVATIONS CONTINUING THROUGH THEIR MOVE

IN JUNE 16th, 2014, AND FOLLOWING EVEN UNTIL

NOW. IN THIS PROJECT I WILL CATALOG SOME OF THE

RENOVATIONS THEY HAVE COMPLETED ON AS WELL AS OFFER SUGGESTIONS I HAVE COMPILED FROM CONTENT LEARNED IN THIS COURSE.

CLIMATE ANALYSIS

OVERVIEW

THE HOME IS LOCATED ALONG THE FOOT HILLS OF OAKLAND, CALIFORNIA, WITH A BASIC LATITUDE OF 37.75 NORTH AND LONGITUDE OF 122.2 WEST. HEATING DEGREE DAYS FROM A BASE OF 65F IS 2909 AND COOLING DEGREE DAYS FROM A BASE OF 80F IS 128. DESIGN DAY DATA FOR 99% - WINTER IS 34F, AND 97.5% - WINTER IS 35F, WITH A RECORD LOW OF 14F. DESIGN DAY DATA FOR 1% - SUMMER IS 85F, AND 2.5% - SUMMER IS 80F, WITH A RECORD HIGH OF 114F. WINTERS ARE MODERATELY COLD AND SUMMERS ARE WARM AND DRY. RELATIVE HUMIDITY IS FAIRLY CONSISTENT, AROUND 60-80%, WITH A HIGHER HUMIDITY RATING IN THE MORNINGS, YEAR ROUND. WIND SPEED REACHES AN AVERAGE HIGH DURING THE MONTHS OF MAY AND JUNE OF 10 MPH AND A LOW OF 6 MPH DURING THE WINTER MONTHS. 1.01

^{1.01} CALIFORNIA CLIMATE ANALYSIS - HTTP://WWW.ENERGY.

CA.GOV/MAPS/RENEWABLE/BUILDING_CLIMATE_ZONES.

HTML

CLIMATE DATA

LOCATION AND CLIMATE DETAILS:

CALIFORNIA CLIMATE ZONE 3

REFERENCE CITY: OAKLAND

LATITUDE: 37.75 N

LONGITUDE: 122.2 W

ELEVATION: 10 FT.

BASIC CLIMATE CONDITIONS:

SUMMER TEMPERATURE RANGE: 29F

RECORD HIGH TEMPERATURE: 114F

RECORD LOW TEMPERATURE: 14F

DESIGN DAY DATA:

WINTER 99%: 34F

WINTER 97.5%: 35F

SUMMER 1%: 85F

SUMMER 2.5 %: 80F

DEGREE DAYS:

HEATING DEGREE DAYS (BASE 65F): 2909

COOLING DEGREE DAYS (BASE 80F): 128

Wind Speed

Prevailing Wind Direction Summer: WNW

Winter: E / W

Natural Ventilation is most effective when wind speed is 5 mph or greater.

> Zone 3: Oakland 4 of 4

"THE CLIMATE OF ZONE 3 VARIES GREATLY WITH ELEVATION AND THE AMOUNT OF COASTAL INFLUENCE. AREAS WITH MORE COASTAL INFLUENCE EXPERIENCE MODERATE TEMPERATURES YEAR ROUND WITH PRECIPITATION IN THE WINTER AND FOG LIKELY FROM JUNE THROUGH MID-AUGUST. INLAND FROM THE BEACHES AND SEA CLIFFS, LOCAL GEOGRAPHY MAY REDUCE THE FOG COVER, LESSEN THE WINDS, AND BOOST SUMMER HEAT. WINTERS ARE MODERATELY COLD WITH MOST OF THE ANNUAL RAIN FALLING BETWEEN OCTOBER AND MARCH. WINTER SUNSHINE NEVERTHELESS IS PLENTIFUL. SUMMERS ARE WARM AND DRY, BUT THE NIGHTS ARE COOL. RAIN IS RARE DURING THE SUMMER MONTHS. A NEED FOR HEATING IS THE DOMINANT DESIGN CONCERN, BUT THE CLIMATE IS MILD ENOUGH THAT ENERGY CONSUMPTION IS RELATIVELY LOW."

- ZONE 3: OAKLAND PAGE 1 OF 4,

CALIFORNIA CLIMATE ANALYSIS

CLIMATE DESIGN PRIORITIES

WINTER:

INSULATE

REDUCE INFILTRATION

PASSIVE SOLAR

SUMMER:

SHADE

ALLOW NATURAL VENTILATION

TITLE 24 REQUIREMENTS

PACKAGE:

CEILING INSULATION

C: R38

D: R30

WOOD FRAME WALLS

C: R25

D: R13

GLAZING U-VALUE

C: 0.42

D: 0.67

MAXIMUM TOTAL AREA

C: 14%

D: 20%

ENERGY CONSUMPTION DATA

ENERGY COMPUTATIONS:

```
The square footage (minus the garage) evens out to be 1,640 SF

Electricity conversions (1 KWH = 3,413 BTU's = 2216 BTUs/lb of CO-2)

Average of 380 KWH a month, 4,560 KWH a year

4,560 times 3,413 = 15,536,280 BTU's a year

15,536,280 divided by 2216 BTUs/lb of CO-2 = 7,023.14 lb of CO-2

15,536,280 BTU's a year divided by 1,640 SF = 9,475.34 EUR

9,475.34 EUR divided by (2909 HDD + 128 CDD (3,037 total))

Degree days of Oakland, CA = 3.12 BTU's/SF/yr/Degree Day

Gas conversions (1 therm = 100,000 BTU's = 8,403 BTU's/lb of CO-2)

Average of 28 therm a month, 336 therm a year

336 times 100,000 = 33,600,000 BTU's a year

33,600,000 divided by 8,403 BTU's/lb of CO-2 = 3,998.57 lb of CO-2

33,600,000 BTU's a year divided by 1,640 SF = 20,487.80 EUR

20,487.80 EUR divided by 2909 HDD + 128 CDD (3,037 total))

Degree days of Oakland, CA = 6.75 BTU's/SF/yr/Degree Day
```

INDOOR AIR QUALITY

OVERVIEW

"LIVING BUILDING CHALLENGE, A VISIONARY

PATH TO A RESTORATIVE FUTURE" SETS A LIST OF

CRITERIA TO PROMOTE GOOD INDOOR AIR QUALITY

IN RENOVATIONS AND OTHER PROJECTS. 1.02 "LIVING

BUILDING CHALLENGE, A VISIONARY PATH TO A

RESTORATIVE FUTURE" SETS A LIST OF CRITERIA TO

PROMOTE GOOD INDOOR AIR QUALITY IN RENOVATIONS

AND OTHER PROJECTS. PARTICULARLY IN TERMS OF

PROVIDING AN EXTERNAL AND INTERNAL DIRT TRACKIN SYSTEMS; REQUIRED VENTILATION AND EXHAUST

TO OUTSIDE AIR IN ALL KITCHENS, BATHROOMS,

COPY ROOMS, JANITORIAL CLOSETS AND CHEMICAL

STORAGE AREAS; COMPLYING WITH ASHRAE 62 AND

MONITORING CARBON DIOXIDE, TEMPERATURE, AND

HUMIDITY LEVELS; AS WELL AS PROHIBITING SMOKING.

United States Environmental Protection

Agency's website on indoor air quality

particularly insightful. 1.03 They have provided

a series of steps to reduce exposure to VOCs

That are pertinent to the health and well-being

of the individual, such as, keeping exposure to

emissions from products containing methylene

chloride to a minimum, ie: paint strippers,

aerosol spray paints, etc. These are simple

and important steps we can inform our clients

on and are critical to sustainable design and

holistic thinking and are certainly essential to

the home renovation in Oakland, California we

(VOCs) HIGH-RISK AREAS (IE: JANITORIAL CLOSETS

AND CHEMICAL STORAGE AREAS, ETC.), I FOUND

IN REFERENCING VENTILATION AND EXHAUST EFFORTS IN ALL VOLATILE ORGANIC COMPOUNDS

1.03 UNITED STATES ENVIRONMENTAL PROTECTION

AGENCY, AN INTRODUCTION TO INDOOR AIR

QUALITY (IAQ), HTTP://WWW.EPA.GOV/IAQ/VOC.HTML

HAVE BEEN ADDRESSING HERE.

^{1.02 &}quot;LIVING BUILDING CHALLENGE, A VISIONARY PATH TO
A RESTORATIVE FUTURE"

SUSTAINABLE SYSTEMS

OVERVIEW

THERE ARE THREE MAJOR SYSTEMS I'D LIKE

TO ADDRESS IN MY PROJECT. FIRST, INCREASING

NATURAL VENTILATION AS THE PRIMARY (AND SOLE)

COOLING METHOD OF THE HOME. THIS PLAYS INTO

THE SECOND, WHICH IS ADDRESSING THE LARGE PANED

GLASS WINDOWS ON THE SOUTHERN-WESTERN SIDE TO

1) BE REPLACED WITH A MORE HEAT EFFICIENT AND

OPERABLE SYSTEM AS WELL AS 2) ADDRESSING THE

NEED TO HAVING AN EXTERIOR SHADING SYSTEM. AND

THIRD, ISOLATING THE HEATING SYSTEM INTO ZONES,

SPECIFICALLY BETWEEN EACH LEVEL OF THE HOME.

IMAGE ON RIGHT:

VIEW TO THE SOUTH BAY FROM THE LARGE SOUTH-

1. VENTILATION

I'D LIKE TO LOOK INTO USING A BROAN "BALANCED VENTILATION" SYSTEM WHICH EXCHANGES EQUAL VOLUME OF INDOOR AND OUTDOOR AIR, AVOIDING PRESSURIZING OR DEPRESSURIZING THE HOME, SPECIFICALLY DURING THE WINTER MONTHS WHERE NATURAL VENTILATION WILL BE TOO COOL. Broan's systems remove polluted indoor air WITH A HEPA FILTRATION SYSTEM WHILE BRINGING INTO THE HOME FRESH OUTDOOR AIR. THEIR ENERGY-RECOVERY VENTILATION (ERV) SYSTEM CONTROL DIRECTION OF VENTILATION TO MINIMIZE ENERGY LOSS BY TRANSFERRING HEAT AND HUMIDITY FROM THE WARM INSIDE THAT IS EXHAUSTED TO THE FRESH OUTDOOR AIR IN THE WINTER, AS WELL AS, COOLING INSIDE AIR IN THE SUMMER. THE ERV SYSTEM BRINGS OUTDOOR AIR INTO THE HOME WHILE EXCHANGING THE EXHAUSTED STALE AIR FROM INSIDE THE HOME, AND ALLOWS MOISTURE FROM THE INDOOR AIR IN THE WINTER/OUTDOOR AIR IN THE SUMMER TO TRANSFER. 1.04

SOUTH-WEST FACING LIVING ROOM WINDOWS

^{1.04} HTTP://WWW.BROAN.COM/PRODUCTS/PRODUCT-LINE/
BALANCED-VENTILATION-SYSTEMS

HAVING OPERABLE WINDOWS IS ESSENTIAL TO EMBRACING NATURAL VENTILATION. CURRENTLY THE HOME HAS LARGE SINGLE PANE WINDOWS IN THE LIVING ROOM. (SEE IMAGE ON THE RIGHT.) THERE IS A SMALL PORTION OF THE ON THE BOTTOM OF THE WINDOW FRAME THAT IS OPERABLE. I WOULD LIKE TO PROPOSE A NEW CASEMENT WINDOW SYSTEM THAT WOULD ALLOW THE ENTIRE WINDOWS TO BE OPENED TO ALLOW GREATER NATURAL VENTILATION INTO THE HOME, PARTICULARLY ALLOWING THE RAISED WARM AIR TO FILTER OUT MORE EASILY WITH THE HIGHER OPENINGS IN THE WINDOWS. (SEE DIAGRAM ON THE RIGHT.) 1.05 AS WELL AS A DOUBLE PAN, LOW E GLASS SYSTEM THAT I WILL ADDRESS IN THE FOLLOWING SECTION.

^{1.05} HTTP://WWW.THEWINDOWMEDICSNE.COM/CASEMENT-WINDOW-DIAGRAM.HTM

2. SHADING

THE CASEMENT WINDOW SYSTEM I'M LIKE

TO IMPLEMENT ARE PELLA'S ENERGY EFFICIENT

"ADVANCED LOW-E INSULATING GLASS WITH ARGON"

FEATURING TWO PANES OF GLASS, BLOCKING 84% OF

ULTRAVIOLET, WINDOWS. THESE INSULATE WELL FROM

THE COLD IN THE WINTER AS WELL AS PREVENTING

OVERHEATING IN THE SUMMER 1.06.

THE BUILDING ORIENTATION IS PRECISELY ALONG
THE NORTH AND SOUTH AXIS. THE ENTRANCE AND
GARAGE ARE DIRECTLY NORTH, AND THE OPPOSING
WINDOWS ARE ALONG THE SOUTHERN FAÇADE.
SOUTHERN LIGHTING IS THE MOST OPTIMAL YEAR
ROUND, WITH NORTHERN LIGHTING BEING SECOND
BEST. LIGHTING FROM THE EAST AND WEST ARE
BEST TO AVOID BECAUSE OF THE LOW SUN ANGLES
AND POTENTIAL FOR SUMMER OVERHEATING. THE
MAJORITY OF THE "MAIN" WINDOWS ARE LOCATED
ON THE SOUTHERN FAÇADE OF THE HOME, HOWEVER,
THE LIVING ROOM WHICH IS THE RECTANGULAR SHAPE
"OFFSET" FROM THE REST OF THE ORTHOGRAPHIC

Light guiding	Temperate
ceiling	climates, sunny skies
•	_
×	4

^{1.06} HTTP://WWW.PELLA.COM/FEATURES-AND-OPTIONS/ENER
GY-EFFICIENCY/GLASS-OPTIONS.ASPX

"OFFSET" FROM THE REST OF THE ORTHOGRAPHIC
GEOMETRY OF THE BUILDING (SEE FLOOR PLAN ON
THE RIGHT.) THIS GIVES THE LARGEST, AND TALLEST
WINDOW FRAMES A SOUTH-WEST, NON-OPTIMAL,
ORIENTATION, ESPECIALLY CONSIDERING THERE IS
NO MECHANICAL COOLING SYSTEM IN THE HOME,
SO SUMMER OVERHEATING IS A CONCERN. WHILE
INTRODUCING PELLA'S ENERGY EFFICIENT ADVANCED
LOW-E INSULATING GLASS WITH ARGON DOUBLE
PANE CASEMENT WINDOWS, I WOULD ALSO SUGGEST
THE USE OF OKASOLAR'S REFLECTING PROFILES SUNSHADING SYSTEM. THIS SYSTEM REFLECTS DIRECT
LIGHT TO HELP PREVENT SUMMER OVERHEATING WHILE
STILL ALLOWING REFRACTED LIGHT AS THE PRIMARY
LIGHTING SOURCE. 1.07

^{1.07} HTTP://WWW.OKALUX.DE/EN/SOLUTIONS/BRANDS/OKASOLAR/OKASOLAR-F/

3. ZONING & HEATING

THE HOME, BUILT IN 1979, USES A GAS FORCED AIR HEATING SYSTEM WITH ONE ZONE. By implementing Aprilaire's Model 6504 TEMPERATURE CONTROL SYSTEM WHICH USES "POWER DAMPERS" THAT OPEN AND CLOSE TO ALLOW OR RESTRICT HEATED AIR FLOW THROUGHOUT THE HOME, THE AIR SYSTEM BEGINS TO BE MUCH MORE SUSTAINABLE IN THAT THE OCCUPANTS HARDLY INHABIT EVERY ROOM EVERY DAY, SO IT WILL ALLOW THEM TO CONTROL WHERE THE HEAT IS DIRECTED TO. 1.08 THE HOME IS PREDOMINATELY VERTICAL IN DESIGN AND IS HOUSED BY A COUPLE IN THEIR LATE 50's WITH THEIR CHILDREN ALREADY GROWN AND OUT OF THE HOME. NINETY PERCENT OF THE YEAR THE HOME IS SOLELY OCCUPIED BY THE COUPLE, WHO FREQUENT THE LIVING AND KITCHEN SPACE ON THE MAIN FLOOR AS WELL AS THEIR BEDROOM ON THE TOP LEVEL. THE TWO GUEST BEDROOMS ARE LOCATED IN THE BASEMENT AND ARE REALLY ONLY OCCUPIED DURING HOLIDAYS. DURING THE WINTER MONTHS WHEN

A SPLIT-SYSTEM HEAT PUMP HEATING CYCLE 1.09

1.09 ENERGY EFFICIENCY AND RENEWABLE ENERGY - AIR SOURCE
HEAT PUMPS - THE U.S. DEPARTMENT OF ENERGY (DOE) BY
THE NATIONAL RENEWABLE ENERGY LABORATORY (NREL),
HTTP://www.nrel.gov/docs/fy01osti/28037.pdf

GUESTS ARE NOT STAYING WITH THE COUPLE, THERE
IS NO REASON THE BASEMENT NEEDS TO BE HEATED
AS THE OTHER FLOORS ARE. THIS IS THE IMPORTANCE
OF AN AIR ZONING SYSTEM - BEST UTILIZING SPACES
IN THE HOME BY ADDRESSING HOW EACH SPACE
FUNCTIONS.

Another aspect to address is how best to get the home off of an natural gas system, which is both essential for the safety of the home and for the care of the environment. Because of the mild winters of the South Bay, the most practical economically and environmentally would by an electric Air-source heat pump.

I WOULD RECOMMEND WORKING WITH THE LOCAL BIGHAM'S ONE HOUR HEATING & AIR CONDITIONING IN OAKLAND, CALIFORNIA TO INSTALL A SYSTEM THAT MEETS THE ENERGY STAR REQUIREMENTS. 1.10

A SPLIT-SYSTEM HEAT PUMP COOLING CYCLE 1.11

1.11 ENERGY EFFICIENCY AND RENEWABLE ENERGY - AIR

SOURCE HEAT PUMPS - THE U.S. DEPARTMENT OF ENERGY

(DOE) BY THE NATIONAL RENEWABLE ENERGY LABORATORY

(NREL), http://www.nrel.gov/docs/fy01osti/28037.pdf

^{1.10} HTTP://WWW.ONEHOURHEATANDAC.COM/HEAT-PUMPS/

DEEP ENERGY RETROFIT

"SEVEN STEPS TO NET ZERO ENERGY USE"

IN RESEARCHING DEEP ENERGY RETROFIT

INFORMATION ON GREEN BUILDING ADVISOR I FOUND

"SEVEN STEPS TO NET ZERO ENERGY USE." 1.12 THESE

STEPS WILL BE THE GUIDELINES I WILL EXPOUND ON

HERE.

1. UPGRADE MECHANICAL SYSTEMS

Built in 1979, the home is heated by a Gas, Forced Air system with one zone.

This would be a great first-step and major upgrade in reducing energy to address.

- 2. Bring the basement and crawlspace inside the house
- 1.12 GREEN BUILDING ADVISOR "SEVEN STEPS TO NET ZERO
 ENERGY USE." HTTP://www.greenbuildingadvisor.

 COM/GREEN-BASICS/REMODEL-PROJECT-DEEP-ENERGY
 -RETROFIT

THERE IS NO "BASEMENT", BUT THE HOME
IS BUILT ON THE APEX OF A CLIFF-FACE SO
THE STILT-LIKE CONSTRUCTION DOES GIVE
SPACE FOR VARIOUS CRAWLSPACES THAT

- 3. SUPER-INSULATE AND AIR-SEAL THE ROOF

 THE HOME HAS A FLAT ROOF, AND COULD

 ALSO USE SPRAY FOAM INSULATION WHICH

 COULD ELIMINATE THE NEED FOR ROOF

 VENTING.
- 4. REPLACE THE WINDOWS

THE TYPES OF WINDOWS I'D LIKE TO INTRODUCE ARE PELLA'S ENERGY EFFICIENT ADVANCED LOW-E INSULATING GLASS WITH ARGON DOUBLE PANE WINDOWS, WHICH I ADDRESSED IN THE MIDTERM ESSAY LAST WEEK.

5. Insulate the walls

FILLINGS WALL CAVITIES WITH CELLULOSE
WOULD BE A NO-BRAINER. IT WOULD ALSO
BE USEFULLY TO CHECK ALL VOIDS HAVE
BEEN FILLED WITH INFRARED CAMERAS.

- 6. BUY ENERGY STAR (OR BETTER)

 THIS IS ALSO A NO-BRAINER. FIXTURES,

 APPLIANCES AND LIGHTING WOULD ALL

 MAXIMIZE ENERGY EFFICIENCY.
- 7. Add a renewable-energy source

 With wind speed reaching an average high during the months of May and June of 10 mph and a low of 6 mph during the winter months, introducing a wind power harnessing

SYSTEM COULD BE VERY BENEFICIAL.

BACK DECK ON SOUTH SIDE OF TEH HOME

CONCLUSION

The residents of this home in Oakland,

California are ideal candidates for every

solution mentioned in this project. They are

very much sustainably aware of their role as

homeowners and are at a phase in life where

they have both the means and the available time

to really make serious changes. I am excited to

be able to share this project when I stay with

them this summer and hope to be able to begin

many discussions about the key topics addressed

here.

BEFORE THIS COURSE, MY UNDERSTANDING
OF GREEN REMODELING AS A PRACTICE REVOLVED
AROUND THE IMPROVEMENT OF ENERGY EFFICIENCY
AND RESOURCE EFFICIENCY OF EXISTING STRUCTURES.
AFTER THIS WEEK'S STUDY, I UNDERSTAND THAT YES,
THESE ARE IMPORTANT FACTORS, BUT THEY ARE ALSO
THIRD AND FOURTH ON THE LIST - SECOND, BEING THE
DURABILITY OF CONSTRUCTION METHODS, AND MOST
IMPORTANTLY, FIRST, THE IMPROVEMENT OF HEALTHY
INDOOR ENVIRONMENTS.

Master Bedroom - Thirs Floor